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Abstract. In this paper, we consider the limit cycles of a class of polynomial differential
systems of the form ẋ = −y2p−1, ẏ = x2mp−1 + ε(px2mp + qy2p)(g(x, y) − A), where
g(x, y) is a polynomial. We obtain the maximum number of limit cycles that bifurcate
from the periodic orbits of a center using the averaging theory of first order.
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1 Introduction and main results

One of the main problems in the qualitative theory of real planar differential equations is
to determinate the number of limit cycles for a given planar differential system. As we all
know, this is a very difficult problem for a general polynomial system. Therefore, many
mathematicians study some systems with special conditions. To obtain the number of limit
cycles as many as possible for a planar differential system, we usually take in consideration of
the bifurcation theory. In recent decades, many new results have been obtained (see [11, 13]).

Consider the following Kukles polynomial differential system{
ẋ = −y

ẏ = x + ∑n
d=2 gd(x, y),

(1.1)

where [·] = d
dt and gd(x, y) is a homogeneous polynomial of degree n.

Several works have been done for ∑n
d=2 gd(x, y) of lower order. In [12], the author gave

necessary and sufficient conditions in order that (1.1) with n = 3 has a center at the origin.
The authors in [21] considered a reduced Kukles systems with n = 3 without the term y3. The
authors of [3] presented some systems that yield at most five limit cycles bifurcating from the
origin. In [9], the authors studied the conditions of at most one limit cycle bifurcating from
the origin for (1.1) with n = 3. The authors proved that the Kukles system with two fine foci
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can generate at least six limit cycles in [26]. In [22], the author proved some cubic systems of
(1.1) can have seven limit cycles.

The authors in [16] introduced a class of cubic systems (1.1) with an invariant parabola
which coexists with a center under given parameters. In [2], the authors described a cubic
system (1.1) that has an invariant hyperbola to coexist with two limit cycles.

Afterwards, the authors’ interests converted to finding maximum number of small ampli-
tude limit cycles coexisting with invariant ellipses. In [6], the authors studied the systems of
the form (1.1). For n = 4 and n = 5, they obtained the maximum numbers of small-amplitude
cycles using the method of calculation of Poincaré–Liapunov constants (see [8]). The authors
in [23] presented a class of quintic systems of the form (1.1) having an invariant ellipse with
what small amplitude limit cycles bifurcating from the origin coexist. In [25], the authors
considered another class of extended Kukles system of degree 2n + 5 with an invariant non-
degenerate conic and two invariant straight line which coexist with at least n small amplitude
limit cycles for certain values of the parameters. In [24], the authors introduced the following
system {

ẋ = −y

ẏ = x + ε(x2 + y2)
(

∑n1−2
i=1 (qixi + q̃iyi)− A1

)
,

(1.2)

where qi, q̃i ∈ R and A1 > 0.
Regarding system (1.2) as a perturbation of a Hamiltonian system, the authors studied a

class of Kukles systems having an invariant ellipse in the case of n ∈ {2k, 2k− 1} and obtained
at most k− 2 limit cycles bifurcating from a unperturbed Hamiltonian center.

In [18], using the averaging theory of first and second order, the authors studied the
maximum number of limit cycles bifurcating from the periodic orbits of the linear center
ẋ = −y, ẏ = x perturbed inside a class of generalized Kukles polynomial differential systems{

ẋ = −y

ẏ = x + ∑k≥1 εk( f k
n1
(x) + gk

n2
(x)y + hk

n3
(x)y2 + dk

0y3),

where for every k, the polynomials f k
n1
(x), gk

n2
(x) and hk

n3
(x) have degree n1, n2 and n3, re-

spectively, dk
0 6= 0 is a real number and ε is a small parameter.

Using the averaging theory of first, second order and third order, the author in [20] studied
the limit cycles of the following differential systems obtained by polynomial perturbations
with arbitrary degree on the second component of the standard linear center{

ẋ = −y

ẏ = x + (x2 + y2)∑l≥1 εl(gl(x, y)− Al),

where the degree of polynomial gl(x, y) with gl(0, 0) = 0 is nl − 2 which is much greater
than 1 and Al > 0, and gave an accurate upper bound of the maximum number of limit cycles
that the perturbed system can have bifurcating from the periodic orbits of linear center:

(a) k1 − 2 for first order;

(b) {k2 − 2, 2[ n1−2
2 ]− 2} for second order;

(c) {k3 − 2, [ n2−2
2 ]− 1} for third order.
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In [17], the authors proved that the maximum number of limit cycles of the following
generalized Liénard polynomial differential system{

ẋ = −y2p−1

ẏ = x2q−1 − ε f (x)y2n−1,

is at most [m
2 ] where p, q and n are positive integers, m is the degree of the polynomial f (x).

Consider the following system{
ẋ = −y2p−1

ẏ = x2mp−1 + ε(px2mp + mpy2p)(g(x, y)− A),
(1.3)

where the degree of polynomial g(x, y) with g(0, 0) = 0 is n which is much greater than or
equal to 1, p is a positive integer and A > 0. Our main result is the following.

Theorem 1.1. Assume that A > 0, the degree of polynomial g(x, y) with g(0, 0) = 0 is n. Let
n ∈ {2k, 2k− 1} and k ≥ 1, then for ε sufficiently small, the maximum number of limit cycles of (1.3)
bifurcating from the periodic orbits of the center ẋ = −y2p−1, ẏ = x2mp−1 using the averaging theory
of first order is

(a)
(k + 2)(k− 1)

2
, if k ≤ m,

(b) mk− m(m− 1) + 2
2

, if k ≥ m + 1.

System (1.3) with p = m = 1 was studied by [20].
In [19], the authors studied the maximum numbers of limit cycles that can bifurcate from

an integrable nonlinear quadratic isochronous center. They proved that the number of limit
cycles in a Liénard-like perturbation of a quadratic nonlinear center is always greater or equal
than a Liénard-like perturbation of a linear center.

Our results indicate that the number of limit cycles in a perturbation of a nonlinear center
is always greater or equal than a perturbation of a linear center.

2 Preliminaries

Averaging theory of first order

In order to obtain the existence of periodic orbits, we introduce the averaging theory found
in lots of literatures, such as [5, 7, 10, 14] and so on. In short, the method gives a quantitative
relation between the solutions of a non-autonomous periodic system and the solutions of its
averaged system, which is autonomous. It is summarized as follows.

Consider the differential system

ẋ(t) = εF1(x, t) + ε2R(x, t, ε),

where F1 : R× D → R and R : R× D × (−ε0, ε0) → R are continuous functions whose first
variable is T-periodic and D ∈ R is an open set. Assume that the following hypotheses (1)
and (2) hold.
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(1) F1 and R are locally Lipschitz with respect to x. We define F1,0 : D → R as

F1,0(z) =
1
T

∫ T

0
F1(s, z)ds,

(2) V ⊂ D is an open and bounded set and for each ε ∈ (−ε0, ε0)\{0}, there exists aε ∈ V
such that F1,0(aε) and dB(F1,0, V, aε) 6= 0.

Then for ε > 0 sufficiently small there exists a T-periodic solution ϕ(·, aε) of the system
such that ϕ(0, aε)→ aε when ε→ 0.

The expression dB(F1,0, V, aε) 6= 0 means that the Brouwer degree of the function F1,0 : V →
R at the point aε is not zero. A sufficient condition in order that this inequality holds is that
the Jacobian of the function F1,0 at aε is different from zero.

Descartes Theorem

In order to confirm the number of zeros of certain real polynomial, we will make use of the
following Descartes Theorem [1, 4].

Consider the real polynomial p(x) = ai1 xi1 + ai2 xi2 + · · ·+ aik xik with 0 ≤ i1 < i2 < · · · < ik
and ik 6= 0 real constants for j ∈ {1, 2, · · ·, k}. When aij aij+1 < 0, we say that aij and aij+1 have
a variation of sign. If the number of variations of signs is m, then p(x) has at most m positive
real roots. Moreover, it is always possible to choose the coefficients of p(x) in such a way that
p(x) has exactly k− 1 positive real roots.

3 Proof of of Theorem 1.1

The proof of Theorem 1.1 depends on the first order averaging theory presented in Section 2.
Obviously, system (1.3) with ε = 0 is a Hamiltonian system with Hamiltonian function

H(x, y) =
1

2mp
x2mp +

1
2p

y2p.

This system has a global center (i.e. the periodic orbits surrounding the origin filled the
whole plane R at the origin of coordinates). In this paper we want to study how many periodic
orbits persist after perturbing the periodic orbits of this center in the system (1.3) for ε 6= 0
sufficiently small.

Applying the following (p, q)-trigonometric function

x(θ) = Cs θ, y(θ) = Sn θ. (3.1)

We regard it as the solution of the following initial value problem

ẋ = −y2p−1, ẏ = x2mp−1, x(0) = p−
1

2mp , y(0) = 0.

Clearly, we can verify that the following equality holds

p Cs2mp θ + mp Sn2p θ = 1.

Referring to [15], by means of easy computation, it follows that Cs θ and Sn θ are T-periodic
functions with period

T = 2p−
1

2mp mp−
1

2p
Γ( 1

2p )Γ(
1

2mp )

Γ( 1
2p +

1
2mp )

. (3.2)
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We will take the following generalized Liapunov polar coordinate change of variables

x = rp Cs θ, y = rmp Sn θ. (3.3)

Let

g(x, y) =
n

∑
d=1

( d

∑
j=0

aj,dxd−jyj
)

= Ag(x, y) + Bg(x, y) + Cg(x, y) + Dg(x, y),

(3.4)

where

Ag(x, y) =
[ n

2 ]

∑
l=1

( l

∑
i=1

a2i−1,2lx2l−2i+1y2i−1
)

,

Bg(x, y) =
k

∑
l=1

( l

∑
i=0

a2i,2l−1x2l−2i−1y2i
)

,

Cg(x, y) =
[ n

2 ]

∑
l=1

( i

∑
i=0

a2i,2lx2l−2iy2i
)

,

Dg(x, y) =
k

∑
l=1

( i

∑
i=1

a2i−1,2l−1x2l−2iy2i−1
)

.

For simplicity of computation, we will use the following formula∫ T

0
Cs2a+1 θ Snb θdθ =

∫ T

0
Csa θ Sn2b+1 θdθ = 0, ∀ a, b ∈ N, (3.5)

where N denotes a nonnegative integer.
By means of the change of coordinates (3.3), we rewrite the polynomial g(x, y) as

g(r, θ) = Ag(r, θ) + Bg(r, θ) + Cg(r, θ) + Dg(r, θ), (3.6)

where

Ag(r, θ) =
[ n

2 ]

∑
l=1

( l

∑
i=1

a2i−1,2l Cs2l−2i+1 θ Sn2i−1 θ

)
rp(2l−2i+1)+mp(2i−1),

Bg(r, θ) =
k

∑
l=1

( l

∑
i=0

a2i,2l−1 Cs2l−2i−1 θ Sn2i θ

)
rp(2l−2i−1)+2mpi,

Cg(r, θ) =
[ n

2 ]

∑
l=1

( i

∑
i=0

a2i,2l Cs2l−2i θ Sn2i θ

)
rp(2l−2i)+2mpi,

Dg(r, θ) =
k

∑
l=1

( i

∑
i=1

a2i−1,2l−1 Cs2l−2i θ Sn2i−1 θ

)
rp(2l−2i)+mp(2i−1),

and the system of the form of (1.3) can be written as

ṙ = εr2mp2−mp+1 Sn2p−1 θ · [g(r, θ)− A],

θ̇ = r2mp2−p−mp + εpr2mp2−mp Cs θ · [g(r, θ)− A].
(3.7)
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Now taking θ as independent variable, system (3.7) becomes

dr
dθ

= εF1(r, θ) +O(ε2),

where

F1(r, θ) = rp+1 Sn2p−1 θ · [g(r, θ)− A], (3.8)

which is in the standard form for applying the averaging theory.
Then from Section 2 we obtain that

F1,0(r) =
1
T

∫ T

0
rp+1 Sn2p−1 θ[g(r, θ)− A]dθ. (3.9)

Using (3.6) in (3.9), we have in light of (3.5) that

F1,0(r) =
rp−mp+1

T

k

∑
l=1

( l

∑
i=1

a2i−1,2l−1bi,lr2(mp−p)i
)
· r2pl , (3.10)

where bi,l =
∫ T

0 Cs2l−2i θ Sn2p+2i−2 θdθ 6= 0.
For the simplicity of calculation, Let ci,l = a2i−1,2l−1bi,l , t = r2p, therefore, (3.10) can be

reduced to

F1,0(t) =
t

p−mp+1
2p

T

k

∑
l=1

( l

∑
i=1

ci,l

)
· t(m−1)i+l . (3.11)

As we all know, the number of positive roots of F1,0(t) is equal to that of

G1,0(t) =
k

∑
l=1

( l

∑
i=1

ci,l

)
· t(m−1)i+l . (3.12)

Now we expand the polynomial (3.12) as follows:

G1,0(t) =
k

∑
l=1

( l

∑
i=1

ci,l

)
· t(m−1)i+l

=
k

∑
l=1

(c1,ltm−1+l + c2,lt2(m−1)+l + c3,lt3(m−1)+l + · · ·+ cl−1,lt(l−1)(m−1)+l + cl,ltlm)

= c1,1tm + (c1,2tm+1 + c2,2t2m) + (c1,3tm+2 + c2,3t2m+1 + c3,3t3m)

+ · · ·
+ (c1,k−2tm+k−3 + c2,k−2t2m+k−4 + · · ·+ ck−2,k−2tm(k−2)

+ (c1,k−1tm+k−2 + c2,k−1t2m+k−3 + c3,k−1t3m+k−4 + · · ·+ ck−1,k−1tm(k−1))

+ (c1,ktm+k−1 + c2,kt2m+k−2 + c3,kt3m+k−3 + · · ·+ ck,ktmk−1). (3.13)
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For the convenience of considering the above polynomial, we can further rewrite (3.13) as:

G1,0(t) = (c1,1tm + c1,2tm+1 + c1,3tm+2 + c1,4tm+3 + · · ·+ c1,k−1tm+k−2 + c1,ktm+k−1)

+ (c2,2t2m + c2,3t2m+1 + c2,4t2m+2 + c2,5t2m+3 + · · ·+ c2,k−1t2m+k−3 + c2,kt2m+k−2)

+ (c3,3t3m + c3,4t3m+1 + c3,5t3m+2 + · · ·+ c3,k−1t3m+k−4 + c3,kt3m+k−3)

+ · · ·
+ (ck−3,k−3t(k−3)m + ck−3,k−2t(k−3)m+1 + ck−3,k−1t(k−3)m+2 + ck−3,kt(k−3)m+3)

+ (ck−2,k−2t(k−2)m + ck−2,k−1t(k−2)m+1 + ck−2,kt(k−2)m+2)

+ (ck−1,k−1t(k−1)m + ck−1,kt(k−1)m+1)

+ ck,ktkm. (3.14)

Now we consider the number of positive roots of polynomial (3.14).

Statement (a) of Theorem 1.1

Suppose that k ≤ m, then the number of positive roots of polynomial (3.14) is at most

(k− 1)(k + 2)
2

.

Proof. From (3.14), it is not difficult to find that the degree of the latter item is greater than the
one of the former item in each line. Since k ≤ m, it follows that the degree of first item in the
latter line is greater than the one of the last item in the former line. Therefore, the number of
terms in polynomial (3.14) is

k + k− 1 + k− 2 + k− 3 + · · ·+ 3 + 2 + 1 =
k(k + 1)

2
.

Consequently, according to the Descartes Theorem stated in Section 2, we can choose the
appropriate coefficients ci,j in order that the simple positive roots number of G1,0(r) is at most

k(k + 1)
2

− 1 =
(k− 1)(k + 2)

2
.

This completes the proof of statement (a).

Statement (b) of Theorem 1.1

Suppose that k ≥ m + 1, then the number of positive roots of polynomial (3.14) is at most

mk− m(m− 1) + 2
2

.

Proof. In the same way, let i = k−m, where 1 ≤ i ≤ k. In this condition, we find that after the
collection of terms of the polynomial (3.14), the number of terms in polynomial (3.14) is

k + k− 1 + k− 2 + · · ·+ 2 + 1− i− (i− 1)− (i− 2)− · · · − 2− 1 =
(k− i)(k + i + 1)

2
.
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Similarly, according to the Descartes Theorem stated in Section 2, we can choose the appro-
priate coefficients ci,j in order that maximum number of the simple positive roots of G1,0(r) is

k + k− 1 + k− 2 + · · ·+ 2 + 1− i− (i− 1)− (i− 2)− · · · − 2− 1− 1

=
(k− i)(k + i + 1)

2
− 1.

(3.15)

Finally, substitute i = k−m to (3.15), it is now obvious that the statement (b) of the theorem
holds, this completes the proof of statement (b).
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